Projecting species distributions using fishery‐dependent data
نویسندگان
چکیده
Many marine species are shifting their distributions in response to changing ocean conditions, posing significant challenges and risks for fisheries management. Species distribution models (SDMs) used project future the face of a climate. Information fit SDMs generally comes from two main sources: fishery-independent (scientific surveys) fishery-dependent (commercial catch) data. A concern with data is that fishing locations not independent underlying abundance, potentially biasing predictions distributions. However, resources surveys increasingly limited; therefore, it critical we understand strengths limitations developed We simulation approach evaluate potential inform abundance estimates quantify bias resulting different sampling scenarios California Current System (CCS). then evaluated ability changes spatial over time compare scale which model performance degrades between as function climate novelty. Our results show generated can still result high predictive skill several decades into future, given specific forms preferential low Therefore, may be able supplement information reduced or eliminated budgetary reasons future.
منابع مشابه
Modelling species distributions without using species
M. Kearney ([email protected]), Dept of Zoology, The Univ. of Melbourne, Victoria 3010, Australia. B. L. Phillips, School of Biological Sciences AO8, The Univ. of Sydney, New South Wales 2006, Australia. C. R. Tracy, K. A. Christian and G. Betts, School of Science and Primary Industries, Charles Darwin Univ., Darwin, Northern Territory 0909, Australia. W. P. Porter, Dept of Zoology, The Univ....
متن کاملProjecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas
Marine life is being affected by changes in ocean conditions resulting from changes in climate and chemistry triggered by combustion of fossil fuels. Shifting spatial distributions of fish species is a major observed and predicted impact of these oceanographic changes, and such shifts may modify fish community structure considerably in particular locations and regions. We projected future range...
متن کاملModeling Data using Directional Distributions
Traditionally multi-variate normal distributions have been the staple of data modeling in most domains. For some domains, the model they provide is either inadequate or incorrect because of the disregard for the directional components of the data. We present a generative model for data that is suitable for modeling directional data (as can arise in text and gene expression clustering). We use m...
متن کاملProjecting rates of spread for invasive species.
All else being equal, the faster an invading species spreads, the more dangerous its invasion. The projection of spread rate therefore ought to be a central part of the determination of invasion risk. Originally formulated in the 1970s to describe the spatial spread of advantageous alleles, integrodifference equation (IDE) models have since been co-opted by population biologists to describe the...
متن کاملpattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fish and Fisheries
سال: 2022
ISSN: ['1467-2979', '1467-2960']
DOI: https://doi.org/10.1111/faf.12711